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Over forty years ago, the Implicit Monte Carlo (IMC) equations emerged as a robust linearization of 
the nonlinear thermal radiative transfer equations that describe the interaction of photons with matter. 
However, for sufficiently large time steps, the IMC equations can produce nonphysical “temperature 
spikes,” and the conventional remedy has been to manually reduce the time-step size until these 
artifacts disappear. We have derived necessary, sufficient, and approximate conditions on the time-step 
and temperature-grid sizes to ensure that the IMC temperature solutions satisfy a discrete maximum 
principle–that is, in the absence of inhomogeneous sources, the internal material temperatures remain 
between specified boundary conditions. This work is now being used as the basis of a dynamic time-
step controller for the IMC equations.

The Implicit Monte Carlo (IMC) equations are an unconditionally 
stable time-discretization and linearization of the thermal radiative 

transfer equations that are amenable to a stochastic, particle-based 
(Monte Carlo) solution algorithm [1]. However, the IMC equations can 
admit nonphysical temperature solutions if the time step is chosen 
to be sufficiently large [2]. Specifically, for problems that contain no 
inhomogeneous sources, it has been shown that the thermal radiative 
transfer equations obey a maximum principle–that is, the interior 
temperatures are bounded above and below by the boundary condition 
temperatures at all times [3]. By contrast, if a sufficiently large time 
step is chosen, the IMC temperature solution can be made to exceed the 
boundary condition temperatures in a heating problem. Fig. 1 provides 
several examples of these IMC maximum principle violations. It depicts 

the spatial temperature profile of an initially 
cold material that is suddenly subjected to a hot, 
isotropic source of radiation on the left boundary 
at a dimensionless time of τ=8 using several 
different choices of time-step sizes. As the time-
step size is increased, the maximum temperature 
of this Marshak wave increasingly overshoots 
the unit left boundary condition and retards the 
wavespeed.

Twenty-five years ago, Larsen and Mercier [2] 
provided a sufficient condition on the time-step 
size of the spatially continuous IMC equations 
to ensure that their solution does not violate the 

maximum principle. However, their sufficient condition was considered 
too conservative for practical use, as simulations showed that time-step 
values that were orders of magnitude larger than their recommendation 
could be employed without the appearance of nonphysical temperature 
solutions.

Recently, we have developed new time-step restrictions to prevent 
nonphysical overheating that explicitly consider the spatial-grid size of 
the temperature discretization [4]. If the restriction on the time- and 
space-dependent grid parameters is satisfied, then we say that the IMC 
solution satisfies a discrete maximum principle. Our main approach is 
to approximately solve the IMC radiative-transfer equations, determine 
an estimate of the maximal radiation energy deposited in a mesh cell, 
and demand that the resulting temperature update not exceed the 
boundary temperature. This demand directly results in an approximate 
time-step recommendation such that the IMC equations do not violate 
the discrete maximum principle. Because our approach is approximate, 
we also developed rigorous necessary and sufficient conditions on the 
maximal time-step size. Employment of our approximate technique on 
sample problems thus far has provided highly accurate predictions of the 
grid-dependent, maximal time-step size for the IMC equations to admit 
physical solutions.

We tested our approach on a 1D, nonlinear, Marshak wave problem–
an initially cold slab of material that is suddenly subjected to a hot, 
isotropic, temperature source on one boundary–using a wide range of 
spatial and temporal grid parameters and both frequency-dependent 
and grey (frequency-integrated) radiation descriptions in the Milagro 

Fig. 1. Temperature profiles at τ=8 
for a Marshak wave problem in which 
the time step is varied using Δτ=0.1, 
0.25, 0.5, 1, and 2 mean free times for 
emission.
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IMC code [5]. The grey results are depicted in 
Fig. 2 on a log-log scale in which the abscissa 
measures the time-step size and the ordinate the 
spatial grid size. The solid blue curve indicates 
interpolated numerical results of IMC calculations 
that segregate physical solutions (above and to the 
left of this line, corresponding to small time steps 
and large spatial cells) and nonphysical solutions 
(below and right of this curve, corresponding to 
large time steps and small spatial cells). The black, 
dashed curve represents the critical time-step sizes 
predicted by our approximate technique. These 
exhibit excellent agreement. Additionally, they are 
bounded above and below by the rigorous sufficient 

and necessary conditions that we developed (dashed magenta and 
dot-dashed cyan lines, respectively). Finally, we note that the vertical 
red line corresponds with the grid-free recommendation of Larsen and 
Mercier [2], which can be many orders of magnitude smaller than the 
observed value depending on the chosen time-step size. Figure 3 depicts 

the results of the same experiment when frequency-
dependent opacities are incorporated, which 
necessitated the development of more involved 
approximations [4]. Again, our approximate 
prediction (the black, dashed curve) is in excellent 
agreement with interpolated numerical results from 
many IMC simulations (the solid blue curve). The 
necessary condition is not shown, as it was always 
satisfied for this problem. Figure 3 also depicts two 
data points from Larsen and Mercier’s earlier work, 
the black “plus” sign, corresponding to an IMC 
calculation without maximum principle violations, 
and the red “x,” corresponding to a nonphysical 
solution. Because the left plus sign is about three 

orders of magnitude larger than the predicted time-step limit, Larsen 
and Mercier remarked that their time-step limit was too conservative. 
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Fig. 3. First incidences of theoretically 
predicted (dashed) and experimental 
(solid) maximum-principle violations 
for a frequency-dependent Marshak 
wave problem.

Fig. 2. First incidences of theoretically 
predicted (dashed) and experimental 
(solid) maximum-principle violations 
for a grey Marshak wave problem. The 
Δτ from the continuous maximum 
principle is the vertical line at the left.

However, Fig. 3 shows that their choice of the spatial grid size had a 
substantial influence on that assessment.

Because the memory requirements of the numerical solution of the 
IMC equations are significant, it has been computationally prohibitive 
to adaptively restart an IMC calculation from the previous cycle 
using a smaller time step whenever maximum principle violations 
are encountered. Using our theory as its foundation, research is now 
underway to construct an inexpensive, grid-dependent, dynamic time-
step controller for the IMC equations that should preclude nonphysical 
temperature spikes in the IMC temperature solution. Paul W. Talbot 
of Oregon State University has undertaken the 3D extension and 
implementation of this work into Jayenne Project software as part of his 
Master’s project [6].


